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Exercise 1. (Chapter 10.1, Problem 20) Consider the BVP:{
x2y ′′ − xy ′ + λy = 0

y(1) = 0, y(L) = 0, L > 1

Find all the (real) eigenvalues and eigenfunctions of this equation (cf. Theorem 11.2.1).
Hint: it is an Euler equation.

Exercise 2. Consider Chebyshev’s equation (where p is a constant):

(1 − x2)y ′′ − xy ′ + p2y = 0,

1. Find two linearly independent series solutions valid for |x| < 1 (or at least on an
open neighbourhood of 0).

2. Existence of polynomial solutions.

(a) When p = n is an integer, show that there is a polynomial solution to the
equation.
Under the normalization condition y(1) = 1, these polynomials are called
Chebyshev polynomials and denoted Tp.

(b) Compute Chebyshev polynomials Tp for p ∈ {0, 1, 2, 3, 4}.

3. Back to the general case, solve Chebyshev’s equation for x ∈ ]−1, 1[ using the
change of variable x = cos θ.

Exercise 3. For Euler equation x2y ′′ − xy ′ + y = 0, can you find a series solution
y =

∑
⩾0 anx

n? Why not?
In fact, 0 is a regular singular point and the formal solution is of a different form.

There are exciting developments in ordinary differential equations with regular singu-
larities and irregular singularities. We overview the following in recitation:

1. Regular formal solutions

2. Irregular formal solutions

3. The famous Hilbert 21st problem!
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Solution: This is an Euler differential equation, so we look for solutions of the
form y(x) = xr = er lnx for r ∈ C, and determine the possible values of r by plugging
back into the equation. We have y ′(x) = rxr−1 and y ′′(x) = r(r− 1)xr−2, so the ODE
gives

x2r(r− 1)xr−2 − xrxr−1 + λxr = (r(r− 1) − r+ λ)xr = 0

So we want r to satisfy the characteristic equation

r2 − 2r+ λ = 0

The discriminant of this quadratic equation is ∆(λ) = 4(1 − λ).
For a boundary value problems, solutions typically exhibit an oscillatory behaviour.

Solutions will have oscillations if and only if the roots of the characteristic equation
are not real, i.e. if and only if ∆(λ) < 0. So we expect that all the eigenvalues of the
BVP are more than 1. Let’s check this.

• If λ > 1, then the roots are r± = 1 ± i
√
λ− 1. The general solution can be ex-

pressed as

y(x) = x
(
c1 cos(ln(x)

√
λ− 1) + c2 sin(ln(x)

√
λ− 1)

)
Applying the first boundary condition gives

0 = y(1) = c1 cos(0) + c2 sin(0) = c1 ⇒ c1 = 0.

Applying the second boundary condition gives us,

0 = y(L) = Lc2 sin(ln(L)
√
λ− 1)

If c2 = 0 we obtain the trivial solution equal to 0 (not an eigenfunction). If c2 ̸= 0,
then we

sin(ln(L)
√
λ− 1) = 0 ⇒ ln(L)

√
λ− 1 = nπ, n ∈ N>0.

Solving for λ gives us the following set of eigenvalues

λn = 1 +
nπ

lnL
, n ∈ N>0.

The eigenfunctions associated to λn are multiples of

yn(x) = x sin(
nπ

lnL
ln(x)).

• If λ = 1, then we get a double root r = 1 and the general solution is

y(x) = c1x+ c2x ln(x).

Applying the first boundary condition gives

0 = y(1) = c1.
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The second boundary condition gives

0 = y(L) = c2Lln(L) ⇒ c2 = 0.

Therefore there are non non-trivial solution to the BVP, and λ = 1 is not an
eigenvalue.

• If λ < 1, then the roots are r± = 1 ±
√

1 − λ. So the general solution is

y(x) = c1x
1+

√
1−λ + c2x

1−
√

1−λ

Applying the boundary conditions gives

c1 + c2 = 0

c1L
1+

√
1−λ + c2L

1−
√

1−λ = 0

Because λ ̸= 1, the only solution is (c1, c2) = (0, 0). So there are no non-trivial
solution to the BVP, and λ is not an eigenvalue.

Conclusion: the eigenvalues and eigenfunctions of this BVP are exactly those described
in the case λ > 1.
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Solution

1. We look for a power series solution y(x) =
∑

n∈N anx
n. Then the differential

equation gives the recursive relation

∀n ∈ N, an+2 =
n2 − p2

(n+ 1)(n+ 2)
an (1)

The recursion goes by steps of 2, so a solution is uniquely determined by the
initial terms (a0,a1).

In particular, (a0,a1) = (1, 0) and (a0,a1) = (0, 1) give two solutions y1 and y2.
These solutions are linearly independent: if λy1 + µy2 = 0 then evaluating at
x = 0 gives λ = 0. Taking the derivative and evaluation at x = 0 gives µ = 0.

To check that y1 and y2 converge, we can use Theorem 5.3.1 in the textbook:
the power series converge in a neighbourhood of 0 where the coefficients x

1−x2

and p2

1−x2 are analytic (meaning they admit convergent power series expansion
at x = 0). We have

x

1 − x2 =
∑
n⩾0

x2n+1 and
p2

1 − x2 =
∑
n⩾0

p2x2n.

Those two series converge when |x| < 1, so the solutions y1 and y2 converge on
(−1, 1).

2. (a) The existence of a polynomial solution is equivalent to finding a solution
(an)n∈N to the recursion (1) such that an = 0 for n large enough.
If p is an even integer, then we claim that the solution associated to te initial
conditions (a0,a1) = (1, 0) is polynomial. Indeed, since a1 = 0 we have
a2n+1 = 0 for all n ∈ N. Furthermore ap+2 = 0, so ap+2n = 0 for all
n ∈ N>0.
If p is an odd integer, then (a0,a1) = (0, 1) provides a polynomial solution.

(b) We look for multiples of the polynomial solution described above.

• p = 0: we have y1(x) = 1, which already satisfies the normalization
condition so T0(x) = 1.

• p = 1: we have y2(x) = x which already satisfies y2(1) = 1, so T1(x) = x.

• p = 2: we have y1(x) = −2x2 + 1 and y1(1) = −1, so T2(x) =
y1(x)
y1(1) =

2x2 − 1.
• p = 3: we have y2(x) = −4

3x
3 + x and y2(1) = 1

3 , so T3(x) =
y2(x)
y2(1) =

4x3 − 3x.
• p = 4: we have y1(x) = 8x4 − 8x2 + 1 and y1(1) = 1, so T4(x) = 8x4 −

8x2 + 1.
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3. The substitution x = cos θ for 0 < θ < π is equivalently expressed as θ = arccos x.
Then

dy

dx
=

dy

dθ
· dθ
dx

=
dy

dθ
· −1√

1 − x2
,

d2y

dx2 =
d

dx

(
dy

dθ
· −1√

1 − x2

)
=

−x

(1 − x2)
3
2
· dy
dθ

+
1

x2 − 1
· d

2y

dθ2

Since we assume θ ∈ (0,π) we have
√

1 − x2 =
√

1 − cos2 θ = sin θ. Plugging
these expressions into the ODE we get:

−
cos θ
sin θ

dy

dθ
−

d2y

dθ2 +
cos θ
sin θ

dy

dθ
+ p2y = 0 ⇐⇒ d2y

dθ2 = p2y.

We deduce y(θ) = A cos(pθ) +B sin(pθ), and going back to the x variable we see
that the general solution is

y(x) = A cos(p arccos(x)) +B sin(p arccos(x)).

Remark: the Chebschev polynomial of degree n is usually defined by the equation
Tn(cos θ) = cos(nθ).
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